Solution to 1992 Problem 39


The coefficient C_n of \sin (n \omega t) in the Fourier expansion of V(t) is
\begin{align*}\frac{\omega}{\pi}\int_0^{2 \pi/\omega} \sin\left(n \omega t\right) V(t) &= \frac{\omega}{\pi}\int_0^{ \pi/...
When n is even C_n = 0 and when n is odd C_n equals
\begin{align*}C_n = \frac{4 }{n \pi }\end{align*}
The coefficients D_n of \cos (n \omega t) are
\begin{align*}\frac{\omega}{\pi}\int_0^{2 \pi/\omega} \cos\left(n \omega t\right) V(t) &= \frac{\omega}{\pi}\int_0^{ \pi/...
Therefore, the coefficients of \cos (n \omega t) are all zero.
Therefore, answer (B) is correct.


return to the 1992 problem list

return to homepage


Please send questions or comments to X@gmail.com where X = physgre.